Endothelial cells from visceral adipose tissue disrupt adipocyte functions in a three-dimensional setting: partial rescue by angiopoietin-1.
نویسندگان
چکیده
During obesity, chronic inflammation of human white adipose tissue (WAT) is associated with metabolic and vascular alterations. Endothelial cells from visceral WAT (VAT-ECs) exhibit a proinflammatory and senescent phenotype and could alter adipocyte functions. We aimed to determine the contribution of VAT-ECs to adipocyte dysfunction related to inflammation and to rescue these alterations by anti-inflammatory strategies. We developed an original three-dimensional setting allowing maintenance of unilocular adipocyte functions. Coculture experiments demonstrated that VAT-ECs provoked a decrease in the lipolytic activity, adipokine secretion, and insulin sensitivity of adipocytes from obese subjects, as well as an increased production of several inflammatory molecules. Interleukin (IL)-6 and IL-1β were identified as potential actors in these adipocyte alterations. The inflammatory burst was not observed in cocultured cells from lean subjects. Interestingly, pericytes, in functional interactions with ECs, exhibited a proinflammatory phenotype with diminished angiopoietin-1 (Ang-1) secretion in WAT from obese subjects. Using the anti-inflammatory Ang-1, we corrected some deleterious effects of WAT-ECs on adipocytes, improving lipolytic activity and insulin sensitivity and reducing the secretion of proinflammatory molecules. In conclusion, we identified a negative impact of VAT-ECs on adipocyte functions during human obesity. Therapeutic options targeting EC inflammation could prevent adipocyte alterations that contribute to obesity comorbidities.
منابع مشابه
COMP-angiopoietin-1 mitigates changes in lipid droplet size, macrophage infiltration of adipose tissue and renal inflammation in streptozotocin-induced diabetic mice
Adipose tissue is considered to be an endocrine organ, and adipocyte size correlates with insulin resistance and metabolic parameters in obesity. There is little data on the effects of angiopoietin-1 in adipose tissue and kidney in streptozotocin (STZ)-induced diabetes. In this study, we investigated the protective effect of COMP-angiopoietin-1 (COMP-Ang1), a potent variant of angiopoietin-1, o...
متن کاملReview Paper: Adipose Tissue, Adipocyte Differentiation, and Variety of Stem Cells in Tissue Engineering and Regeneration
Human adipose tissue represents an abundant, practical and appealing source of donor tissue for autologous cell replacement. Recent findings have shown that stem cells within the stromalvascular fraction of adipose tissue display a multilineage developmental potential. Adipose tissue-derived stem cells can be differentiated towards adipogenic, osteogenic, chondrogenic,myogenic and neurogenic li...
متن کاملGhrelin Does not Alter Aortic Intima-Media Thickness and Adipose Tissue Characteristics in Control and Obese Mice
Objective(s): Atherosclerosis is a chronic immune-inflammatory disease that generally leads to ischemic heart disease. Ghrelin has several modulatory effects on cardiovascular system. In this study, we investigated the effect of ghrelin on aortic intima-media thickness, size and the number of adipocyte cells in obese and control mice. Materials and Methods:This study was conducted on 24 male C...
متن کاملAngiogenesis Associated With Visceral and Subcutaneous Adipose Tissue in Severe Human Obesity
OBJECTIVE The expansion of adipose tissue is linked to the development of its vasculature. However, the regulation of adipose tissue angiogenesis in humans has not been extensively studied. Our aim was to compare the angiogenesis associated with subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from the same obese patients in an in vivo model. RESEARCH DESIGN AND METHODS Adi...
متن کاملEnhanced angiogenesis in obesity and in response to PPAR activators through adipocyte VEGF and ANGPTL4 production
Gealekman O, Burkart A, Chouinard M, Nicoloro SM, Straubhaar J, Corvera S. Enhanced angiogenesis in obesity and in response to PPAR activators through adipocyte VEGF and ANGPTL4 production. Am J Physiol Endocrinol Metab 295: E1056–E1064, 2008. First published August 26, 2008; doi:10.1152/ajpendo.90345.2008.— PPAR activators such as rosiglitazone (RSG) stimulate adipocyte differentiation and inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 63 2 شماره
صفحات -
تاریخ انتشار 2014